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Abstract 

This paper discusses response surface 
methods for approximation model building and 
multidisciplinary design optimization. The re- 
sponse surface methods discussed are central 
composite designs, Bayesian methods and D- 
optimal designs. An over-determined D-optimal 
design is applied to a configuration design and 
optimization study of a wing-body, launch ve- 
hicle. Results suggest that over determined D- 
optimal designs may provide an efficient ap- 
proach for approximation model building and 
for multidisciplinary design optimization. 

Introduction 

Computerized design and analysis capabili- 
ties exist in many key disciplines required for 
design and analysis of space transportation 
systems. For a given configuration, system 
performance characteristics can be determined 
by the use of these analysis codes. The next 
step is to determine the settings of design pa- 
rameters that optimize the system performance 
characteristics subject to constraints. However, 
the complex computer programs used in aero- 
space design are usually stand alone codes run 
by disciplinary experts. In most cases, they are 
expensive and/or difficult to integrate and use 

directly for multidisciplinary design optimiza- 
tion (MDO). An alternative is to construct dis- 
ciplinary approximation models for the func- 
tional relationships between performance 
characteristics and design parameters. These 
approximations are referred to as response sur- 
face models. The response surface models are 
then used to integrate the disciplines using 
mathematical programming methods. In many 
cases this approach allows efficient system 
level design analysis, MDO and rapid sensitiv- 
ity simulations. 

Response Surface Model Buildinp Us - 
inp Central Composite Desipns 

A second-order approximation model of the 
form given below (Equation 1) is commonly 
used in response surface model building since 
in many cases it can adequately model the re- 
sponse surface, especially if the region of inter- 
est is sufficiently limited. 

In (l), the Xi terms are the input variables 
that influence the response y, and bp, bi, and 
b j  are estimated regression coefficients. The 
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cross terms represent two-parameter interac- 
tions, and the square terms represent second- 
order non-linearity. Constructing a second- 
order model requires that “n” design parameters 
be studied at least at 3 levels (values) so that the 
coefficients in the model can be estimated. 
Therefore 3n factorial experiments (design 
points, functional evaluations or observations) 
may be necessary. For small values of “n” such 
as two or three, this approach works well. 
However, when a large number of design pa- 
rameters are under study, the number of obser- 
vations required for a full-factorial design may 
become excessive. Fortunately, a second-order 
approximation model can be constructed effi- 
ciently by utilizing central composite designs 
(CCD) from design-of-experiments literature. ’ 
CCD are first-order (2n) designs augmented 
by additional center and “star” points to allow 
estimation of the coefficients of a second-order 
model. ’ ,2 

Central composite designs offer an efficient 
alternative to 3n designs for constructing sec- 
ond-order response surface models. A problem 
involving five parameters for example, requires 
only 27 CCD experiments to construct a sec- 
ond-order response surface model as opposed 
to 243 (35) required by a full-factorial study. 
The authors have utilized CCD for second or- 
der approximation model building and MDO in 
numerous launch vehicle design applica- 
t i o n ~ . ~ > ~ , ~  The number of design parameters 
studied (n) ranged from four to six. In these 
applications, the fitted second-order model pre- 
dicted the analysis results with reasonable accu- 
racy within the design region studied. 

ResDonse Surface Model Buildinp Us - 
inp Minimum Point D-ODtimal Desipns 

CCD enable the efficient construction of a 
second-order response surface model with sig- 
nificantly less effort than would be required by 
a full factorial study. However, in some cases, 
which involve large numbers of design vari- 
ables, conducting experiments may be time- 
consuming and very expensive even with the 
use of CCD. In such cases, minimum point D- 
optimal designs may be utilized to generate a 
design matrix that enables a more efficient con- 
struction of a second-order m0de1.~>~ A design 
is called “minimum point” when the number of 
design points is exactly equal to the number of 

terms in the model to be fitted.6,12,13 As a re- 
sult, minimum point designs require the abso- 
lute minimum number of functional evaluations 
(experiments) to estimate the second-order 
model coefficients. Compared to minimum 
point D-optimal designs, CCD are overdeter- 
mined designs or there are more experiments 
than required to estimate the second-order 
model coefficients. 

A statistical measure of goodness of a 
model obtained by least squares regression 
analysis is the minimum generalized variance of 
the estimates of the model coefficients. One 
way to construct a quadratic model using 
minimum point designs, leading to minimized 
variance of the least squares estimates, is to use 
the D-optimality criterion. Consider the prob- 
lem of estimating the coefficients of a linear ap- 
proximation model below by least squares re- 
gres sion analysis ;1,5,6 

Equation (2) can be expressed in matrix 
notation as: 

Y = X B + e  (3) 

Where Y is a vector of observations, e is 
the vector of errors, X is the design matrix and 
B is a vector of unknown model coefficients 
(bo and bi). The design matrix is a set of com- 
binations of the values of the coded variables, 
which specifies the settings of the design pa- 
rameters to be performed during experimenta- 
tion. B can be estimated by using the least 
squares method as: 

B = (XlX)-’ X’Y (4) 

A measure of accuracy of the column of es- 
timators, B, is the variance-covariance matrix 
which is defined as;1>5>6>13 

V(B) = o2 (XlX)-’ (5) 

where c? is the variance of the error. The V(B) 
matrix is a statistical measure of the goodness- 
of-fit. Equation 5 indicates that V(B) is a func- 
tion of (XlX)-’ and therefore, one would want 
to minimize (XlX)-’ to improve the quality of 
the fit. Statisticians have shown that minimiz- 
ing (XlX)-’ is equivalent to maximizing the 



determinant of X'X. l3>l4,l5 Therefore, gener- 
ating a design matrix which enables the con- 
struction of a good least squares approximation 
model translates to maximizing the determinant 
of the X'X matrix and experimental designs 
that maximize IX'XI are referred to as D- 
optimal d e s i g n ~ . ~ . ~ > l ~  Here, "D" stands for the 
determinant of the X'X matrix associated with 
the model. This analysis can easily be extended 
to the quadratic model given by Equation , with the same conclusions for D-optimality. Ill 

A number of authors have developed algo- 
rithms for obtaining D-optimal designs for spe- 
cific models using mathematical programming 
m e t h ~ d s . ~ > l ~ , l ~  There are also numerous 
software packages available for desk top com- 
puters.16 A major limitation of a saturated de- 
sign is the minimum (poor) coverage of the re- 
gion of interest. l7 However, D-optimal 
minimum point designs generally work well in 
initial screening situations in which it is ex- 
pected that there will be a few important pa- 
rameters. 15,17. AS a result, minimum-point D- 
optimal designs may be used in lieu of CCD 
when there are large numbers of variables un- 
der study and experimental design effort is ex- 
pensive and resources are limited. 

ResDonse Surface Model Buildin2 
Methods for Deterministic ExDeriments 

For most experimental designs constructed 
for building response surface models, a domi- 
nant issue is the variance of measurements of 
the r e ~ p o n s e . ~  However, the output of ex- 
periments carried out using computer models, 
as mostly used in aerospace design, is deter- 
ministic. Generally, there is no measurement 
error or no variability in analysis outputs, given 
a specific set of inputs. Therefore, experimental 
designs constructed to minimize variability of 
measurements and the accompanying statistical 
methods for model accuracy analysis may not 
be the best choice for deterministic experi- 
m e n t ~ . ~ > ~  

Reference 8 presents an experimental de- 
sign approach based on the Bayesian statistics. 
The approaches for design and analysis of 
computer experiments using Bayesian statistics 
are given in references 8 and 9 in some detail. 
Bayesian approach to experimental design is a 
growing area of research. However, the appli- 

cation of Bayesian experimental design meth- 
ods in practical design analysis and optimiza- 
tion problems seems to have been limited.1° 
Further development appears to be needed be- 
fore they can be applied to practical design op- 
timization problems. 

Usinp Overdetermined D-ODtimal De - 
s i m s  for Deterministic ExDeriments 

As noted previously, experimental designs 
constructed with the objective of minimizing 
experimental variance may not always be the 
best choice when approximating deterministic 
models. Reference 11 conducted a study com- 
paring the performance of experimental design 
methods for approximation model building for 
deterministic models in terms of the quality of 
fit in the region studied and in terms of the 
number of design points required. The findings 
suggest that CCD are good designs for prob- 
lems with five or less design parameters. This 
is consistent with the authors' experience 
where good approximations have been obtained 
using CCD in many applications.3>.".5 HOW- 
ever, for larger values of n, reference 11 rec- 
ommends the use of augmented minimum point 
designs that are around 20% to 50% over- 
determined and, suggests the use of the D- 
optimality criteria as a heuristic in selecting de- 
sign points for deterministic experiments. 

As a result, the use of 20% to 50% over- 
determined D-optimal designs for approxima- 
tion model building appear to be a good choice 
for response surface model building for deter- 
ministic experiments, especially for larger Val- 
ues of n (1126). 

WinP Bodv Launch Vehicle Confimra- 
tion Studv 

An application of approximation model 
building and MDO using over-determined D- 
optimal designs is described for a configuration 
optimization study of a rocket-powered, single- 
stage-to-orbit launch vehicle. The vehicle is 
sized to perform a 25,000 lb. payload delivery 
to the International Space Station from Ken- 
nedy Space Center. Near term structures and 
subsystem technologies are assumed in its de- 
sign. The vehicle has a wing-body configura- 
tion with a slender, round cross-section fuse- 
lage and a clipped delta wing. The delta wing 



has elevon control surfaces for aerodynamic 
roll and pitch control. Small vertical fins, called 
tip fins, are located at the wing tips for direc- 
tional control and a body flap extends rearward 
from the lower base of the fuselage to provide 
additional pitch control. 

1 
2 
3 
4 
5 
6 

4 1 1  
42 
4 3 1  
4 4 1  
4 5 1  

In this study, six vehicle design parameters 
and 15 two-parameter interactions were studied 
at three values by conducting 45 design ex- 
periments as opposed to 729 that would be re- 
quired by a full-factorial study. The purpose 
was to determine the best values of the design 
parameters that satisfy aerodynamic constraints 
at minimum weight. 

FR WA TFA BFL BL MR Weight 

-1 -1 -1 -1 -1 1 
-1 -1 -1 -1 1 -1 
-1 -1 -1 1 -1 0 
-1 -1 -1 1 1 1 
-1 -1 0 1 -1 -1 
-1 -1 1 -1 -1 1 

1 0 0  -1 1 
1 1 1 -1 -1 -1 

1 1  -1 1 1  
1 1  1 0 - 1  
1 1  1 1  1 

To derive the shape of the configuration, 
response surface methods for MDO were used. 
At first, a face-centered central composite de- 
sign (CCD) was utilized. However, the result- 
ing data contained many design points of ex- 
cessive weight or design points which were 
very far from being optimal. Using this data, 
second order approximation equations were 
generated for weight and for the aerodynamic 
characteristics of the vehicle at subsonic, su- 
personic, and hypersonic flight conditions with 
various control surface settings. The weight 
equations predicted the design points studied 
with some crude accuracy. Deviations from the 
predicted and actual weights (residuals) ranged 
from 2% to 9%. The use of transformations 
(e.g. log (weight)) and the introduction of cu- 
bic terms to the model did not improve the pre- 
diction accuracy. These results suggested that 
the use of CCD may not have been the best 
choice for selecting the experimental design 
points in this case in the region studied. 

In an effort to improve the prediction accu- 
racy, an overdetermined D-optimal design was 
utilized next. The following steps describe this 
multidisciplinary optimization and sensitivity 
study. 

Identifv Design Variables and Feasible Ranges 

Six weight & sizing and aerodynamics de- 
sign parameters were varied over a fixed range. 
The four common parameters included in aero- 
dynamics and weights & sizing analysis were 
the fineness ratio (defined as the fuselage 
length divided by diameter), the wing area, the 
tip fin area, and the body flap area. The other 

two parameters were ballast-weight and mass- 
ratio for weights and sizing analysis and angle 
of attack and elevon deflection for aerodynam- 
ics analysis. The aerodynamics were generated 
for three different mach numbers, which were 
Mach 0.3, Mach 2 and Mach 10. As an exam- 
ple, the ranges for the six weights & sizing pa- 
rameters are given in Table l .  

Table 1. Weights & Sizing Parameters and 
Ranges 

Parameter Range 
Fineness ratio (FR) 4 7 
Wing area ratio (WA) 10 20 
Tip fin area ratio (TFA) 0.5 3 
Body flap area ratio (BFL) 0 1 
Ballast weight (BL) 0 0.04 
Mass ratio (MR) 7.75 8.25 

Construct the Design Matrix 

The next step is to construct an overdeter- 
mined D-Optimal design matrix that can enable 
the construction of a second-order response 
model for six parameters (Table 2). 

Table 2. Six Parameter D-Optimal Design 

The weights approximation equations 
from the previous CCD study were used to 
generate weight predictions for all of the possi- 
ble 729 (36) combinations of the variables at 



three values. The predictions were not very 
good, but still useful enough for the purpose of 
screening out the excessive weight cases. As a 
result, 91 design points (or parameter combi- 
nations) were eliminated due to excessive 
weight. The remaining 638 design combina- 
tions were used as a starting point for generat- 
ing an overdetermined D-optimal design with 
45 design points or experiments (Table 2). l6 

FR WA TFABFL BL MR 

The number of experiments were chosen as 
45 for comparison purposes since this many 
experiments were required by the CCD study. 
With this new design matrix (Table 2), the six 
parameters are studied at three levels (values) 
as represented in coded form by, - 1, 0 and + 1. 
As an example, a -1 for Fineness ratio corre- 
sponds to 4 (lower bound), a 0 corresponds to 
5.5 (mid value) and +1 corresponds to 7 (upper 
bound). These coded values are then trans- 
formed into actual parameter values to be used 
in conducting the analysis. With 45 experi- 
ments, this D-optimal design is about 55 % 
overdetermined since a minimum point D- 
optimal design would require 29 experiments 
for constructing the second order model. 

Weight cg 

Conduct the Matrix ExDeriments 

268475 
264659 
260610 
322372 
268512 
333966 

In this study, all of the geometry and sub- 
system packaging of the vehicle were per- 
formed using a NASA-developed geometry 
modeling tool. The Aerodynamic Preliminary 
Analysis System (APAS) was used to deter- 
mine vehicle aerodynamics. The weights and 
sizing analyses were performed using the 
NASA-developed Configuration Sizing 
(CONSIZ) weightdsizing package. This proc- 
ess was repeated for the 45 rows of the D- 
optimal design matrix, each of which corre- 
sponds to a vehicle design generating the 
weights and aerodynamics data. 

0.74 
0.72 
0.75 
0.73 
0.76 
0.78 

From the weights analysis 45 data points 
for, empty weight, landed weight and landing 
center of gravities were obtained. From the 
aerodynamics analysis, lift, drag and pitching 
moment coefficients for the three mach num- 
bers are obtained (Table 3). 

Construct the Second-Order ResDonse Surface 
Model 

Least squares regression analysis is then 
used to determine the coefficients of the sec- 
ond order approximation model for the weights 
and the aeroynamics data in terms of the six 
design parameters. As a result, second order 
approximation equations for empty weight, 
landed weight and landing center of gravities 
(one for payload-in and one for payload-out) 
were constructed using the weights data. l6 

Table 3. Analysis Results 

41 
42 
43 
44 
45 - 

-1 -1 -1 -1 -1 1 
-1 -1 -1 -1 1 -1 
-1 -1 -1 1 -1 0 
-1 -1 -1 1 1 1 
-1 -1 0 1 -1 -1 
-1 -1 1 -1 -1 1 

1 1  0 0 -1 1 
1 1 1 -1 -1 -1 
1 1  1 - 1 1  1 
1 1 1 1 0 - 1  
1 1 1 1 1 1  

I :  I :  

Approximation equations for the lift, drag 
and pitching moment coefficients for each of 
the three mach numbers are also obtained using 
the aerodynamics data. These second order ap- 
proximation models account for individual pa- 
rameter effects, non linearity (square terms) 
and interactions (cross terms). The prediction 
accuracy of the approximation equations in this 
case was very good (residuals were within 
0.50% to 1.5% range for the weight equa- 
tions). These approximation equations can 
now be used to rapidly determine the effect of 
varying design parameter values on the weights 
and aerodynamic performance characteristics 
and for MDO. A major advantage of this ap- 
proach is that it enables the integration of disci- 
plines for MDO using mathematical program- 
ming methods. Furthermore, sensitivity 
simulations can be carried out without the need 
to re-analyze the entire system after each 
change in parameter values. 



Determine Design Parameter Values that 
ODtimize the ResDonse 

In the next step, the approximation equa- 
tions were transferred into a spreadsheet and a 
gradient-based non-linear optimizer, contained 
within the same spreadsheet, is used to deter- 
mine the settings of design parameter values to 
minimize vehicle empty weight subject to de- 
sign constraints. The results are shown in Ta- 
ble 4. 

Table 4. Optimization Process Results 

Parameter Optimum Value 
Fineness ratio 6.9 
Wing area ratio 18.76 
Tip fin area ratio 1.99 

Ballast weight 0.014 
Mass ratio 8.0 
Predicted Empty Weight 249,792 
Verified Empty weight 249,360 

Body flap area ratio 0 

Using the optimization results and the 
empty weight approximation equation, the ve- 
hicle empty weight is predicted to be 249,792 
pounds. A verification weights & sizing and 
aerodynamics analysis using the optimized val- 
ues was conducted yielding a computed weight 
of 249,360 pounds. This is very close to the 
predicted weight. As indicated by this result, 
the second-order approximation equation con- 
structed using the overdetermined D-optimal 
design accurately represented the response sur- 
face within the region studied for this study. 

Conclusions 

In this paper, response surface methods for 
approximation model building techniques were 
discussed. A major advantage of using ap- 
proximation models is that it enables the inte- 
gration of disciplines for MDO using mathe- 
matical programming methods. Furthermore, 
sensitivity simulations can be carried out with- 
out the need to re-analyze the entire system af- 
ter each change in parameter values. 

The approximation techniques discussed 
were, central composite designs, minimum 
point designs and overdetermined D-optimal 
designs for deterministic experiments. A brief 

summary of each technique was given and an 
application of model building using over- 
determined D-optimal designs for deterministic 
experiments was presented. 

The results suggest that, the use of 20% to 
50% over-determined D-optimal designs for 
approximation model building is a good choice 
for response surface approximation model 
building. 
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